Module #11 Assignment
11/6/2023
10.1
library(ISwR)
data(ashina)
data
ashina$subject <- factor(1:16)
attach(ashina)
act <- data.frame(vas=vas.active, subject, treat=1, period=grp)
plac <-data.frame(vas=vas.plac, subject, treat=0, period = grp)
first I created the model:
additive_model <- aov(vas ~ treat + subject + period, data = rbind(act, plac)) > anova(additive_model) Analysis of Variance Table Response: vas Df Sum Sq Mean Sq F value Pr(>F) treat 1 14706 14706.1 10.413 0.005644 ** subject 15 51137 3409.2 2.414 0.049184 * Residuals 15 21184 1412.3 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > t_test_1 <- t.test(vas ~ treat, data = ashina, subset = period == 1)
> t_test_2 <- t.test(vas ~ treat, data = act, subset = period == 2)
10.3
> model_1 <- lm(z ~ a * b)model_2 <- lm(z ~ a:b)
Call:
lm(formula = z ~ a * b)
Coefficients:
(Intercept) a b a:b
3.3666 -3.3252 -0.8162 0.8592
> model_2
Call:
lm(formula = z ~ a:b)
Coefficients:
(Intercept) a:b
-0.43716 0.05247
The a * b model includes the effect of a and b and the way they interact with z. The coefficients in a and b indicate the change in z for one unit changes in a and b. The a:b model includes the interaction between a and b on z instead of the effects of a and b.After printing the summaries of each model, there are no NA coefficients, leading me to believe that there are no singularities.
Comments
Post a Comment